Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Biomathematics ; 16(7), 2023.
Article in English | Scopus | ID: covidwho-2299172

ABSTRACT

In recent years, the epidemic model with anomalous diffusion has gained popularity in the literature. However, when introducing anomalous diffusion into epidemic models, they frequently lack physical explanation, in contrast to the traditional reaction-diffusion epidemic models. The point of this paper is to guarantee that anomalous diffusion systems on infectious disease spreading remain physically reasonable. Specifically, based on the continuous-time random walk (CTRW), starting from two stochastic processes of the waiting time and the step length, time-fractional space-fractional diffusion, time-fractional reaction-diffusion and fractional-order diffusion can all be naturally introduced into the SIR (S: susceptible, I: infectious and R: recovered) epidemic models, respectively. The three models mentioned above can also be applied to create SIR epidemic models with generalized distributed time delays. Distributed time delay systems can also be reduced to existing models, such as the standard SIR model, the fractional infectivity model and others, within the proper bounds. Meanwhile, as an application of the above stochastic modeling method, the physical meaning of anomalous diffusion is also considered by taking the SEIR (E: exposed) epidemic model as an example. Similar methods can be used to build other types of epidemic models, including SIVRS (V: vaccine), SIQRS (Q: quarantined) and others. Finally, this paper describes the transmission of infectious disease in space using the real data of COVID-19. © 2023 World Scientific Publishing Company.

2.
International Journal of Biomathematics ; 2022.
Article in English | Web of Science | ID: covidwho-2194046

ABSTRACT

In recent years, the epidemic model with anomalous diffusion has gained popularity in the literature. However, when introducing anomalous diffusion into epidemic models, they frequently lack physical explanation, in contrast to the traditional reaction-diffusion epidemic models. The point of this paper is to guarantee that anomalous diffusion systems on infectious disease spreading remain physically reasonable. Specifically, based on the continuous-time random walk (CTRW), starting from two stochastic processes of the waiting time and the step length, time-fractional space-fractional diffusion, time-fractional reaction-diffusion and fractional-order diffusion can all be naturally introduced into the SIR (S: susceptible, I: infectious and R: recovered) epidemic models, respectively. The three models mentioned above can also be applied to create SIR epidemic models with generalized distributed time delays. Distributed time delay systems can also be reduced to existing models, such as the standard SIR model, the fractional infectivity model and others, within the proper bounds. Meanwhile, as an application of the above stochastic modeling method, the physical meaning of anomalous diffusion is also considered by taking the SEIR (E: exposed) epidemic model as an example. Similar methods can be used to build other types of epidemic models, including SIVRS (V: vaccine), SIQRS (Q: quarantined) and others. Finally, this paper describes the transmission of infectious disease in space using the real data of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL